

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY

(AUTONOMOUS)

(Approved by AICTE, New Delhi& Affiliated to JNTUA, Ananthapuramu) (Accredited by NBA for Civil, EEE, Mech., ECE & CSE) (Accredited by NAAC with 'A+' Grade)

Puttur -517583, Tirupati District, A.P. (India)

|--|

Subject with Code	MATLAB PROGRAMMING (20EC0454)	Course & Branch	B.Tech. – CSE, CSIT
Year & Sem	IV-B.Tech. & VII-Sem	Regulation	R20

UNIT-I

INTRODUCTION TO MATLAB

1	a	Define MATLAB and explain its features.	[L1][CO1]	[4M]
	b	Illustrate the MATLAB Default Desktop Window and Explain each interactive	[L3][CO2]	[8M]
		session.		
2	a	Explain how to solve Complex Number equations by using MATLAB with an	[L2][CO1]	[6M]
		example.		
	b	What are the good programming practices for MATLAB?	[L4][CO3]	[6M]
3	a	What are the menus and tool bars available in MATLAB and Explain with	[L2][CO3]	[6M]
		suitable diagram.		
	b	How MATLAB handling the arrays and compute the following array in	[L3][CO2]	[6M]
		MATLAB $w=5 \sin u$ for $u=0, 0.1, 0.2, \dots 10$.		
4	a	Use MATLAB to Interpret the roots of the polynomial $290-11x +6x^2 +x^3$.	[L3][CO2]	[6M]
	b	Illustrate the MATLAB plotting commands with examples.	[L4][CO3]	[6M]
5	a	Describe input and output commands used in MATLAB.		[6M]
	b	Consider the following set of equations and Write MATLAB script to solve it.	[L3][CO2]	[6M]
		6x - 12y + 4z = 70		
		7x - 2y + 3z = 5		
		2x + 8y - 9z = 64		
6	a	List the effective use of Script Files?	[L1][CO1]	[6M]
	b	Discuss MATLAB search Path.	[L2][CO2]	[6M]
7		List the different ways that you can get help in MATLAB. Write brief notes on	[L1][CO3]	[12M]
		MATLAB help system.		
8	a	What are the Steps involved in engineering problem solving?	[L2][CO2]	[6M]
	b	How to debugging the script files in MATLAB?	[L3][CO1]	[6M]
9	a	Compute volume of sphere of radius 5 cm using a MATLAB script.	[L3][CO4]	[6M]
	b	List applications, advantages, and disadvantages of MATLAB.	[L2][CO1]	[6M]
10		Plot the following functions $y = \sqrt{x}$ and $z=4 \sin 3x$ for $0 \le X \le 5$ in MATLAB.	[L1][CO2]	[12M]

UNIT –II ARRAYS

1	9	What is an arr	av? Write sh	ort notes on c	ne dimension	nal and two-di	mensional	[L2][CO1]	[6M]
1		array with an	=		ine difficilision	iai ana two ai	mensionai		[OIVI]
					MATLAR	vith examples.		[L5][CO3]	[6M]
2		Discuss Some		[L2][CO2]	[6M]				
_		Describe in b						[L1][CO1]	[6M]
3					<u> </u>	on and Subtra	ction	[L3][CO1]	[6M]
		For the Given		operation on	Allay Additi	on and Subtra	ction.	[L3][CO3]	[6M]
	U	ror the Given		2 0 6	1	8 5			[UIVI]
			X =-	2 0 6 -5 9 –2 -9 12 6	Y = 8	3 2			
	+	Interpret Arra							
4	a	For the Given		[L2][CO3]	[6M]				
			U =6 0	$ \begin{array}{ccc} -3 & -2 \\ 2 & 6 \\ 7 & 9 \end{array} $	V = 9 -	-6 4 1 0			
		 Interpret Arra				1 0			
		Interpret Array Multiplication using MATLAB. b Write Element-by-Element operation on Array Multiplication.							[6M]
5	_	a Write Element-by-Element operation on Element-by-Element Division.							[6M]
						ed along five t		[L3][CO1] [L2][CO3]	[6M]
		_	_			oute. Use the			
				=			ute that has the		
		highest averag		•					
			1	2	3	4	5		
		Distance	560	440	490	530	370		
		(mi)							
		Time (hr)	10.3	8.2	9.1	10.1	7.5		
6	a	Given the m						[L1][CO3]	[6M]
			1	$A = \begin{pmatrix} 21 & 27 \\ -18 & 8 \end{pmatrix}$	B=	-3			
		Find (i) Their			9	4			
		Find (i) Their	• •	ı, ivision (A div	vided by R) a	nd			
				vo-power elei					
	h	Write Elemen						[L2][CO1]	[6M]
7						following fur	nctions with	[L1][CO1]	[12M]
				•		Ones (). (iii		[][
8						multiplication		[L2][CO2]	[6M]
		example.	uruy	p-11044110				[][_00_]	[[]
		-	Define Empty array with three examples.						
	b	Define Linkt	array willi li	iree examples				L1 CO5	
9			•			ned in MATLA	AB? Explain	[L1][CO5] [L1][CO1]	[6M]
9	a		nial Multiplic			ned in MATLA	AB? Explain	[L1][CO5] [L1][CO1]	
9			•			ned in MATLA	AB? Explain		

				T		
			Walden Pond	June 13, 1997		
			[60 72 65]	55 57 56 54 56 55 52 55 53		
10	a	What is structure	array? How does it d	iffer from ordinary arrays and cell arrays	? [L1][CO2]	[6M]
				following types of student data:	[L3][CO1]	[6M]
		■ Student	name.			
		■ Social S	ecurity number.			
		■ Email ac	ddress.			
		■ Test sco	res.			
		Enter the data sho	wn in Figure			
			Structure array "student"			
		Student(1)		Student(2)		
			Name: John Smith	Name: Mary Jones		
			SSN: 392-77-1786	SSN: 431-56-9832		
			Email: smithj@myschool.edu	Email: jonesm@myschool.edu		
			Tests: 67, 75, 84	Tests: 84, 78, 93		

<u>UNIT-III</u>

FUNCTIONS AND FILES

1	a	Discuss about Exponential and Logarithmic Functions in elementary mathematical	[L2][CO3]	[6M]
		function with appropriate commands.		
	b	Compute the following using MATLAB commands.	[L1][CO1]	[6M]
		a) √ −144		
		b) <i>e</i> ^{3<i>y</i>}		
		c) $\log_{10}(2y)$		
		d) log (-4x)		
2	a	Explain how complex functions are handled by MATLAB. Give some examples.	[L2][CO4]	[6M]
	b	Explain the following MATLAB commands with suitable examples.	[L5][CO3]	[6M]
		a) The round function,		
		b) The ceil function,		
		c) The floor function.		
3	a	Explain how Trigonometric Functions and Hyperbolic Functions are handled by	[L2][CO2]	[6M]
		MATLAB. Give some examples.		
	b	Compute the following using MATLAB.	[L1][CO4]	[6M]
		a) For several values of x in the range $0 \le x \le 2$, confirm that		
		$\tan (2 x) = 2 \tan x / (1 - \tan^2 x).$		

_		-		
		b) For several values of x in the range $0 \le x \le 5$, confirm that $\sin(ix) = i \sinh x$.		
4	a	What is User-Defined Functions? Give Some Simple Function Examples	[L2][CO1]	[6M]
	b	Write short note on minimizing a function of one variable.	[L1][CO2]	[6M]
5	a	Compute the area A and circumference C of a circle, given its radius(r=4) as an	[L2][CO4]	[8M]
		input argument.		
	b	What are the advantages of User-Defined Functions in MATLAB?	[L1][CO2]	[4M]
6	a	Distinguish between Local Variables and Global Variables.	[L2][CO3]	[6M]
	b	Explain about methods for calling functions.	[L5][CO2]	[6M]
7		What is mean by functions? Explain various types functions in MATLAB with	[L1][CO1]	[12M]
		suitable example.		
8	a	Explain about Anonymous Functions with suitable example.	[L2][CO3]	[6M]
	b	How Multiple-Input Arguments are handled in Anonymous Functions	[L1][CO2]	[6M]
9	a	What are Nested Functions? Explain with suitable example.	[L3][CO2]	[6M]
	b	Explain about Private function with suitable example.	[L2][CO5]	[6M]
10	a	Briefly explain importing wizard and excel data files in MATLAB.	[L5][CO5]	[6M]
	b	How to Export ASCII Data Files in MATLAB?	[L4][CO3]	[6M]

<u>UNIT – IV</u> <u>PROGRAMMING TECHNIQUES AND PLOTTING</u>

1	a	How program is designed and developed in MATLAB?	[L3][CO1]	[6M]
	b	Compute the perimeter p and the area A of a triangle whose sides are a , b , and c .	[L2][CO4]	[6M]
		The formulas are p=a+b+c, s= (P/2), A= $\sqrt{s(s-a)(s-b)(s-c)}$, with suitable		
		steps.		
2	a	Explain about Conditional Operations with suitable example.	[L2][CO5]	[6M]
	b	Explain about Iterative Operations with suitable example.	[L5][CO3]	[6M]
3	a	List various relational operators available in MATLAB with detailed	[L1][CO1]	[6M]
		description.		
	b	How Logical Operators and Functions are handled in MATLAB?	[L3][CO2]	[6M]
4	a	If $x = [5, -3, 18, 4]$ and $y = [-9, 13, 7, 4]$, what will be the result of the following	[L1][CO1]	[6M]
		operations? Use MATLAB to check your answer.		
		a) $z = \sim y > x$		
		b) $z = x \& y$		
		c) $z = x \mid y$		
		d) z = xor (x,y)		
		Suppose that $x = [-9, -6, 0, 2, 5]$ and $y = [-10, -6, 2, 4, 6]$. What is the result of the	[L3][CO4]	[6M]
		following operations? Determine the answers by hand, and then use MATLAB to		
		check your answers.		
		a) z = (x < y)		
		b) z = (x > y)		
		$c) z = (x \sim = y)$		
		d) z = (x == y)		
<u> </u>		e) z = (x > 2)		
5		Explain "if" Statement in MATLAB With suitable flow chart.	[L5][CO1]	
	b	Write the following statements to use only one if statement using MATLAB	[L3][CO4]	[6M]
		a) if $x < y$ then, $w = xy$.		

		b) if $a = b$ then, $u = \sinh^{-1}(ab)$.		
6	a	Explain "else" and "elseif" Statement in MATLAB With suitable flow chart.	[L2][CO1]	[6M]
	b	Write a program that accepts a numerical value x from 0 to 100 as input and	[L1][CO4]	[6M]
		computes and displays the corresponding letter grade given by the following table.		
		a) $x \ge 90$		
		b) $80 \le x \le 89$		
		c) $70 \le x \le 79$		
		d) $60 \le x \le 69$		
		e) $x < 60$		
		a. Use nested if statements in your program (do not use elseif).		
		b. Use only elseif clauses in your program.		
7		Explain "for loop" Statement in MATLAB With suitable example.	[L5][CO3]	
	b	Write a script file to compute the sum of the first 15 terms in the series 5 k^2 -2 k ,	[L2][CO1]	[6M]
		$k=1, 2, 3, \ldots, 15.$		
8		Write a program using the switch structure to input one angle, whose value may be	[L3][CO2]	[6M]
		$45, -45, 135, \text{ or } -135^0, \text{ and display the quadrant } (1, 2, 3, \text{ or } 4) \text{ containing the angle.}$		
	b	Explain "xy Plotting Functions" in MATLAB.	[L2][CO1]	[6M]
9	a	What are the tools available in Interactive Plotting in MATLAB? Give suitable	[L1][CO2]	[6M]
		Example.		
	b	Explain plot commands	[L2[CO4]	[6M]
		a) $plot(x,y)$,		
		b) title ()		
		c) xlabel ()		
		d) ylabel ()		
		in MATLAB with an example.		
10	a	Plot the equation $y=0.4 \sqrt{1.8 x}$ for $0 \le x \le 35$ and $0 \le y \le 3.5$.	[L1][CO5]	[6M]
	b	How to plot Three-Dimensional functions in MATLAB with suitable example.	[L2][CO2]	[6M]

$\underline{\mathbf{UNIT} - \mathbf{V}}$

LINEAR ALGEBRAIC EQUATIONS

1	a	Explain matrix methods for linear equations with example.	[L2][CO2]	[6M]
	b	Solve the following equations, using the matrix inverse method.	[L3][CO1]	[6M]
		$2x_1 + 9x_2 = 5$		
		$3x_1 - 4x_2 = 7$		
2	a	Define Rank of Matrix with suitable example.	[L1][CO1]	[6M]
	b	For what values of C will the following set	[L2][CO4]	[6M]
		(a) have a unique solution and		
		(b) Have an infinite number of solutions?		
		Find the relation between x_1 and x_2 for these solutions.		
		$6 x_1 + C x_2 = 0$		
		$2 x_1 + 4 x_2 = 0$		
3	a	Write MATLAB script using left division method to solve the following set of	[L1][CO4]	[6M]
		equations.		
		$5 x_1 - 3 x_2 = 21$		
		$7 x_1 - 2 x_2 = 36$		

	b	For what cases left divis	sion method gives	s error? Explain.					
4	a	Explain the Reduced Rov	w Echelon Form	with an example.		[L2][CO3]	[6M]		
	b	The following underdete	rmined equation	has an infinite nu	mber of solutions exist.	[L3][CO4]	[6M]		
		Use the "rref" function	se the "rref" function to obtain the solutions.						
		$2 x_1 - 4 x_2$							
		$-4 x_1 - 2 x_1$	$x_2 + 3 x_3 = 4$						
		$2x_1 + 6x_2$	$x_2 - 8 x_3 = 0$						
5	a	Explain how Cramer's R	ule performed in	MATLAB? with	an example.	[L5][CO1]	[6M]		
	b	Find the system of Linea		[L1][CO6]	[6M]				
		2x + y + z	i = 3						
		x - y - z =	= 0						
		x + 2y + z							
6	a	Explain Underdetermine	[L5][CO4]						
	b	The following table sho	-		•		[6M]		
			-		eactors are available for				
				termine how mai	ny tons of each product				
		can be produced each w		Dec des et 2	Duradurat 2				
		Hours	Product 1	Product 2	Product 3				
		Reactor A Reactor B	5 3	3	3 4				
7	0	Explain Overdetermined		_	4	[L2][CO1]	[6M]		
′		Solve the following equa	-		MO Cases.	[L2][CO1]			
		c = 9 and $c = 10$.	cions and discuss	the solution for t	wo cuses.		[OIVI]		
		$x_1 + x_2 =$	1						
		$x_1 + 2 x_2 =$							
		$x_1 + 5 x_2 =$							
8	a	Explain how least square		ıl to solve over de	etermined Systems.	[L2][CO1]	[6M]		
	b	Solve the following equa	tions, using the r	natrix inverse me	thod.	[L1][CO3]			
		$3x_1 - 4x_2 =$	= 5						
		$6x_1 + 8x_2$	= 2						
9	a	Discuss in brief about: a)	Under determine	ed system b) over	determined system.	[L2][CO4]	[6M]		
	b	List the different method	s of transfer func	tions in MATLA	B with examples.	[L1][CO1]	[6M]		
10	a	a) Use MATLAB to solv	ve the following of	equations for x , y ,	and z as	[L4][CO3]	[6M]		
			•	2z = 11c					
			•	+z=13c					
			•	5z = 10c					
		b) Plot the solutions for <i>y</i>							
		Discuss about computa	tional difficultie	s using theoretic	cal linear algebra	[L2][CO5]	[6M]		
		techniques.							

Prepared by: Mr.Raghul G, Mr.S.V.Rajesh Kumar, AP/ECE